C++ Programming Tutorial

 
 
 

Data File Structure Programs

Array

Insert, edit, delete, append, display, Srch. Insert, delete, merge, delete multiple occurrences Arrays as a Stack in graphics

Stack

Stack operations using array Stack using static memory allocation Stack using dynamic memory allocation Double ended link list as a stack Lnked list as a Stack Infix expr. to Postfix expr. Postfix expr. into an Infix expr. Arrays as a Stack in graphics Stack as an Arithmetic expr. Evaluater Graphical Rep. of Stack Stack to traverse - inodr, postodr, preodr

Queue

Queue using static memory allocation Queue using dynamic memory allocation Circular queue Linked list as a Queue Double Ended linked list as a Queue Graphical Rep. of Queue Arrays as a Linear Queue Array as a Circular Queue Arrays as a Linear Queue ( in graphics ) Arrays as a Circular Queue ( in graphics )

Linked List

Singly link list Circular linked list Doubly link list Linked list as a Queue Linked list as a Stack Double Ended linked list as a Queue Double Ended linked list as a Stack Infix to Postfix - Linked List as Stack Circular doubly link list Single Ended Linked List - Sorting in both odr Hashing - double ended Linked List Sort of link list

Tree

Linked List as a Binary Srch. Tree Set Class using Binary Srch. Tree Maximum depth of Binary Srch. Tree Minimum Spaning Tree Prims algo - minimum spanning tree Traverse binary tree - inodr, preodr, post Find number in binary Srch. tree display levell

Sorting

Bubble Sort Selection Sort Insertion Sort Radix Sort Merge Sort Quick Sort Heap Sort Linear Sort Shell Sort Topological Sort

Searching

Linear Srch. or Sequential Srch. Binary Search Breadth First Search Traversal Depth First Search Traversal Shortest Path-Given Source-Destination-Dijkstras

Hashing

Simple implementation of Hashing Hashing using double-ended Linked List Hashing using Mid-Square Method Example of Hashing n term of the fibonacci series using recursion

Recursion

Factorial of the given number using recursion Mystery of Towers of Hanoi using recursion
 
 

Image

#include <iostream.h>
#include <conio.h>
#define MAX_NODE 50

struct node{
    int vertex;
    int weight;
    node *next;
};

struct fringe_node{
    int vertex;
    fringe_node *next;
};

node *adj[MAX_NODE]; //For storing Adjacency list of nodes.
int totNodes; //No. of Nodes in Graph.
const int UNSEEN=1,FRINGE=2,INTREE=3; //status of node.
int status[MAX_NODE];//status arr for maintaing status.
fringe_node *fringe_list;//singly link list

void createGraph(){
    node *newl,*last;
    int neighbours;
    cout<<\"\\n\\n---Graph Creation---\\n\\n\";
    cout<<\"Enter total nodes in graph : \";
    cin>>totNodes;
    for(int i=1;i<=totNodes;i++){
        last=NULL;
        cout<<\"Total Neighbours of \"<<i<<\" : \";
        cin>>neighbours;
        for(int j=1;j<=neighbours;j++){
            newl=new node;
            cout<<\"Neighbour #\"<<j<<\" : \";
            cin>>newl->vertex;
            cout<<\"Weight    #\"<<j<<\" : \";
            cin>>newl->weight;
            newl->next=NULL;
            if(adj[i]==NULL)
                adj[i]=last=newl;
            else{
                last->next = newl;
                last = newl;
            }
        }
    }
}

//Insert node in a fring_list at Begining.
void Insert_Beg(int item){
      fringe_node *newl;
      newl = new fringe_node;
      newl->vertex = item;
      newl->next = NULL;
      newl->next = fringe_list;
      fringe_list = newl;
}

//Delete element at pos position from fringe_list.
void del(int pos){
   //to points to previous node from where
   //to insert
   int i;
   fringe_node *tmp,*delnode;
   for(i=1,tmp=fringe_list; i < (pos-1); tmp=tmp->next,i++);

   delnode = tmp->next;
   tmp->next = tmp->next->next;
   delete(delnode);
}

void MST(){
    int i,x,parent[MAX_NODE],edge_count,w,v;
    int min_wt,y,fringe_wt[MAX_NODE],stuck;
    node *ptr1;
    fringe_node *ptr2;

    fringe_list=NULL;
    for(i=1;i<=totNodes;i++)
        status[i]=UNSEEN;
    x=1;
    status[x]=INTREE;
    edge_count=0;
    stuck=0;
    while( (edge_count <= (totNodes-1)) && (!stuck))
    {
        ptr1=adj[x];
        while(ptr1!=NULL){
            y=ptr1->vertex;
            w=ptr1->weight;
            if((status[y]==FRINGE) && (w<fringe_wt[y]))
            {
                parent[y]=x;
                fringe_wt[y]=w;
            }
            else if(status[y]==UNSEEN){
                status[y]=FRINGE;
                parent[y]=x;
                fringe_wt[y]=w;
                Insert_Beg(y);
            }
            ptr1=ptr1->next;
        }
        if(fringe_list==NULL)
            stuck=1;
        else{
            x=fringe_list->vertex;
            min_wt=fringe_wt[x];
            ptr2=fringe_list->next;
            while(ptr2!=NULL){
                w=ptr2->vertex;
                if(fringe_wt[w] < min_wt)
                {
                    x=w;
                    min_wt=fringe_wt[w];
                }
                ptr2=ptr2->next;
            }
            del(x);
            status[x]=INTREE;
            edge_count++;
        }
    }
    for(x=2;x<=totNodes;x++)
        cout<<\"(\"<<x<<\",\"<<parent[x]<<\")\\n\";
}


void main(){
    clrscr();
    cout<<\"*****Minimum Spaning Tree (MST)*****\\n\";
    createGraph();
    cout<<\"\\n===Minimum Spaning Tree===\\n\";
    MST();
    getch();
}

    Related Post:
  1. EXAMPLE OF WRITE FUNCTION

  2. Program that takes 10 integer from a user and perform addition using class

  3. Program to draw a circle using Trigonometric Method

  4. Program to print a Single Ended Linked List in Original & Reverse order and sort it in Ascending & Decending Order

  5. Program to implement the Kurskals Algorithm to solve Minimum Cost Spanning Tree Problem (MST)

  6. Program to perform insertion sort

  7. Mini Project School Management Application

  8. Program to read a Linear System of Equations,then evaluate it by using Gauss-Elimination Method and show the result

  9. Implement a Matrix class representing 2-dimensional matrix with the following functionalities i.e. operators + , - , * , == , += &lt;&lt; , &gt;&gt; etc

  10. Program to show the implementation of Sutherland-Hodgeman Polygon Clipping Algorithm

  11. Program that takes input of vector elements and performs multiplication operation, and input/output (&gt;&gt;, &lt;&lt;) using operator overloading

  12. PROGRAM OF OPERATOR PRECEDENCE MATRIX

  13. Program to draw a line using Bresenhams Line Algorithm (BLA) for lines with slopes positive and greater than 1

  14. Program to print the factorial of first five elements of the fibonacci series

  15. Program to illustrate object initialization and assignment by default member wise copy

  16. Program to implement Add and Subtract function on Big Number Class

  17. Program to implement a Translator that reads an Infix Expression translates it into a Postfix Expression and evaluate the Postfix Expression

  18. Program to search an element in an array using Binary search

  19. Program to estimate the value of Second Derivative of the function at the given points from the given data using Central Difference Formula order 4

  20. To parse a string using Recursive-Descent parser

 
 
Didn't find what you were looking for? Find more on Program of Minimum Spaning Tree ( MST )