C++ Programming Tutorial

 
 
 

Graphics Programming

Quadratic Surfaces

Draw a Sphere using Ellipses Draw a Sphere using Parametric Equations Draw an Ellipsoid using Parametric Equations

Character Generation

Urdu Alphabets using Stroke Method Urdu Alphabets using Matrix Method

Arc

Circular Arc using Trigo. Method Elliptical Arc using Trigo. Method

General Programs

C-Curve of nth order K-Curve of nth order Cubic Bezier Curve Bezier Curve of nth degree Scanfill algorithm Boundary Fill - 8 Connected Point Flood fill algorithm Rotate About Origin Rotate about reference point Scaling about origin Scaling about reference point Polyline translation Reflection in x axis Reflection in y Axis Reflection on any line Midpoint Circle Drawing Bresenhams Line Algorithm (BLA) Generate a pattern Draw a Chess Board Draw a Luddo Board Deterministic Finite Automation for identifier Kurskals algo - Minimum Cost Spanning Tree

Windows Programs

Checkbox like windows Simple windows & buttons Moving message box like windows Text box Graphical Rep. of tower of hanoi Graphical menu - operate it using arrow keys Text animation

Line

Line using Parametric equations Line-Cartesian Slope-Intercept Equation simple imp Line using Cartesian Slope-Intercept Equation Line - BLA - slopes negative and greater than 1 Line - BLA - slopes negative and less than 1 Line - BLA - slopes positive and greater than 1 Line - BLA - slopes positive and less than 1 DDA line drawing algorithm Bresenham line drawing algorithm Cohen sutherland Line clipping algo.

Line Styles

Different kinds of Dashed Lines Different kinds of Thick Lines

Polygons

Draw a Polygon Draw a Triangle Draw a Rectangle Sutherland-Hodgeman Polygon Clipping Algo

Circle

Circle using Trigo. Method Circle using Polynomial Method Circle using Bresenhams Circle algo. Circle using MidPoint Circle algo.

Ellipse

Ellipse using Polynomial Method Ellipse using Trigo. Method Ellipse using MidPoint Ellipse algo.

2D Transformations

Translation Transformation Scaling Transformation Scaling Trans along a Fixed Point Scaling Trans along Arbitrary Direction Rotation Transformation Rotation Trans along a Pivot Point Reflection tran of x-axix, y-axis and w.r.t origin Reflection tran of line y=x and y=-x X-Direction Shear Transformation Y-Direction Shear Transformation

2D Viewing - Clipping

Window-to-Viewport Coordinate Tran Point Clipping Algorithm Cohen-Sutherland Line Clipping Algo Cohen-Sutherland MidPoint Subdivision Line Nicol Lee Nicol algo. for Line Clipping Liang-Barsky Line Clipping Algo Window-to-Viewport Transformaton None-or-All String Clipping Strategy None-or-All Character Clipping Strategy

3D Object Representations

3D object using Polygon-Mesh Rep. 3D object - Translational Sweep Representatiom 3D object - Rotational Sweep Rep.

3D Transformations

3D Rotation Trans along x-axis 3D Rotation Trans along y-axis 3D Rotation Trans along z-axis 3D Reflection Trans along xy-plane 3D Reflection Trans along yz-plane 3D Reflection Trans along zx-plane 3D Shearing Trans along x-axis 3D Shearing Trans along y-axis 3D Shearing Trans along z-axis

Bezier Curves - Surfaces

3D Cubic Bezier Curve 3D Bezier Curve of nth degree 3D Piece-Wise Bezier Curve of nth degree 3D Bezier Surface for MxN control points

Projection

3D objects - Standard Perspective Projection 3D obj - Arbitrary Plane and Center of Projection 3D objects using General Perspective Projection 3D obj-Orthographics Proje Parallel onto xy-plane 3D obj-Cavalier Oblique Parallel prj-xy-plane 3D obj-Cabinet Oblique Parallel prj - xy-plane

Fill Algorithm or Area Filling

Geometric shapes using Boundary Geometric shapes - Boundary - Linked List Geometric shapes using Flood Geometric shapes - Flood - Linked-List Polygon using Scan Line Polygon Rectangle using Scan-Line Rectangle Circle using Scan-Line Circle Circle - Scan-Line Circle - Polar Coordinates
 
 
 # include <iostream.h>
 # include <graphics.h>
 # include    <conio.h>
 # include     <math.h>

 void show_screen( );

 void Bezier_curve(const int [8]);

 double nCr(int,int);
 double factorial(int);

 void Dashed_line(const int,const int,const int,const int,const int=0);


 int main( )
    {
       int driver=VGA;
       int mode=VGAHI;

       int control_points[8]={0};

       do
      {
         show_screen( );

         for(int count=0;count<=3;count++)
        {
           gotoxy(8,10);
           cout<<\"Coordinates of Point-\"<<count<<\" (x\"<<count<<\",y\"<<count<<\") :\";

           gotoxy(8,11);
           cout<<\"ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ\";

           gotoxy(12,13);
           cout<<\"Enter the value of x\"<<count<<\" = \";
           cin>>control_points[(count*2)];

           gotoxy(12,15);
           cout<<\"Enter the value of y\"<<count<<\" = \";
           cin>>control_points[((count*2)+1)];

           gotoxy(8,10);
           cout<<\"                                            \";

           gotoxy(12,13);
           cout<<\"                                            \";

           gotoxy(12,15);
           cout<<\"                                            \";
         }

         initgraph(&driver,&mode,\"..\\\\Bgi\");

         setcolor(15);
           Bezier_curve(control_points);

         setcolor(15);
           outtextxy(110,460,\"Press <Enter> to continue or any other key to exit.\");

         int key=int(getch( ));

         if(key!=13)
        break;
      }
       while(1);

       return 0;
    }



 //--------------------------  Bezier_curve( )  --------------------------//


 void Bezier_curve(const int cp[8])
    {
       int color=getcolor( );

       setcolor(7);

       for(int count=0;count<3;count++)
      Dashed_line(cp[(count*2)],cp[((count*2)+1)],
                    cp[((count+1)*2)],cp[(((count+1)*2)+1)]);

       float x;
       float y;

       for(float u=0.0005;u<=1;u+=0.0005)
      {
         x=0;
         y=0;

         for(int k=0;k<=3;k++)
        {
           x+=(cp[(k*2)]*nCr(3,k)*pow(u,k)*powl((1-u),(3-k)));
           y+=(cp[((k*2)+1)]*nCr(3,k)*pow(u,k)*powl((1-u),(3-k)));
        }

         putpixel((int)(x+0.5),(int)(y+0.5),color);
      }
    }


 //------------------------------  nCr( )  -------------------------------//


 double nCr(int n,int r)
    {
       double nf;
       double rf;
       double nrf;
       double ncr;

       nf=factorial(n);
       rf=factorial(r);
       nrf=factorial((n-r));

       ncr=(nf/(rf*nrf));

       return ncr;
    }


 //---------------------------  factorial( )  ----------------------------//


 double factorial(int number)
    {
       double factorial=1;

       if(number==0 || number==1);

       else
      {
         for(int count=1;count<=number;count++)
        factorial=factorial*count;
      }

       return factorial;
    }


 //---------------------------  Dashed_line( )  --------------------------//


 void Dashed_line(const int x_1,const int y_1,const int x_2,
                      const int y_2,const int line_type)
    {
       int count=0;
       int color=getcolor( );

       int x1=x_1;
       int y1=y_1;

       int x2=x_2;
       int y2=y_2;

       if(x_1>x_2)
      {
         x1=x_2;
         y1=y_2;

         x2=x_1;
         y2=y_1;
      }

       int dx=abs(x2-x1);
       int dy=abs(y2-y1);
       int inc_dec=((y2>=y1)?1:-1);

       if(dx>dy)
      {
         int two_dy=(2*dy);
         int two_dy_dx=(2*(dy-dx));
         int p=((2*dy)-dx);

         int x=x1;
         int y=y1;

         putpixel(x,y,color);

         while(x<x2)
        {
           x++;

           if(p<0)
              p+=two_dy;

           else
              {
             y+=inc_dec;
             p+=two_dy_dx;
              }

           if((count%2)!=0 && line_type==0)
              putpixel(x,y,color);

           else if((count%5)!=4 && line_type==1)
              putpixel(x,y,color);

           else if((count%10)!=8 && (count%10)!=9 && line_type==2)
              putpixel(x,y,color);

           else if((count%20)!=18 && (count%20)!=19 && line_type==3)
              putpixel(x,y,color);

           else if((count%12)!=7 && (count%12)!=8 &&
                (count%12)!=10 && (count%12)!=11 && line_type==4)
              putpixel(x,y,color);

           count++;
        }
      }

       else
      {
         int two_dx=(2*dx);
         int two_dx_dy=(2*(dx-dy));
         int p=((2*dx)-dy);

         int x=x1;
         int y=y1;

         putpixel(x,y,color);

         while(y!=y2)
        {
           y+=inc_dec;

           if(p<0)
              p+=two_dx;

           else
              {
             x++;
             p+=two_dx_dy;
              }

           if((count%2)!=0 && line_type==0)
              putpixel(x,y,color);

           else if((count%5)!=4 && line_type==1)
              putpixel(x,y,color);

           else if((count%10)!=8 && (count%10)!=9 && line_type==2)
              putpixel(x,y,color);

           else if((count%20)!=18 && (count%20)!=19 && line_type==3)
              putpixel(x,y,color);

           else if((count%12)!=7 && (count%12)!=8 &&
                (count%12)!=10 && (count%12)!=11 && line_type==4)
              putpixel(x,y,color);

           count++;
        }
      }
    }


 //--------------------------  show_screen( )  ---------------------------//


 void show_screen( )
    {
       restorecrtmode( );
       clrscr( );
       textmode(C4350);

       cprintf(\"\\n********************************************************************************\");
       cprintf(\"*-**************************-                      -**************************-*\");
       cprintf(\"*---------------------------- \");

       textbackground(1);
       cprintf(\" Cubic Bezier Curve \");
       textbackground(8);

       cprintf(\" ----------------------------*\");
       cprintf(\"*-**************************-                      -**************************-*\");
       cprintf(\"*-****************************************************************************-*\");

       for(int count=0;count<42;count++)
      cprintf(\"*-*                                                                          *-*\");

       gotoxy(1,46);
       cprintf(\"*-****************************************************************************-*\");
       cprintf(\"*------------------------------------------------------------------------------*\");
       cprintf(\"********************************************************************************\");

       gotoxy(1,2);
    }

    Related Post:
  1. Code for finding a no in a binary search tree and displaying its level where it is found (root is at zero level)

  2. Program of simple example of class and object

  3. Program to show the implementation of Window-to-Viewport Coordinate Transformaton

  4. Program to illustrate an array of structure

  5. Program to illustrate the implementation of arrays as a Stack in graphics

  6. Program that reads a number ,coumputes and displays its factorial ( using for loop )

  7. Program to maintain employee information also illustrate virtual class and inheritance

  8. Program that maintains library shop stock using link list

  9. Program to perform insertion sort

  10. Program to generate a pattern

  11. Program of circular link list

  12. Program of class to basic conversion

  13. Program that calculates area of triangle and rectangle using inheritance

  14. Program to convert points to rectangle coordinates and polar coordinates

  15. Program to implement the Kurskals Algorithm to solve Minimum Cost Spanning Tree Problem (MST) using Graphics with Mouse Support

  16. Program that performs SCANNING of the following program and finds the entire float,integer variables and keywords present in the program

  17. Program to read a Non-Linear equation in one variable, then evaluate it using Simple Itrative Method and display its kD accurate root

  18. Program to illustrate the implementation of Rotation Transformation

  19. Program that take font and background color and text input from a user and display it in right aligned

  20. Program of Education System that maintains Institute Database using multilevel inheritance

 
 
Didn't find what you were looking for? Find more on Program to draw a Cubic Bezier Curve